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An X-ray crystallographic structure determination for the
related (R)-(2)-2-phenylglycinol derived amide demon-
strates that (+)-cis-1-methoxycarbonyl-2-methylcyclobutane
is the (1R,2S) isomer.

In the course of work requiring synthetically useful amounts of
chiral 2-methylcyclobutanecarboxylic acid derivatives of
securely known absolute stereochemistry we prepared a sample
of (+)-cis-1-methoxycarbonyl-2-methylcyclobutane, 99% ee by
GC on an Astec 10-m octakis(2,6-di-O-pentyl-3-trifluoroace-
tyl) g-cyclodextrin capillary column. The observed rotation of
our sample, [a]D +58 (CHCl3), seemed hardly consistent with a
report1 that the (+)-enantiomer of this ester of better than 97%
ee had a rotation of [a]D +22.4 (CHCl3). An X-ray crystallo-
graphic structure determination2 for the corresponding amide
(2) derived from (R)-(2)-2-phenylglycinol quickly settled the
stereochemical point (Scheme 1, Fig. 1).

The relative stereochemistry provided by the X-ray structure
and the known absolute stereochemistry of the (R)-phenyl-
glycinol unit3 provide unambiguous evidence for a sure
assignment of absolute stereochemistry: (+)-cis-1-methoxy-
carbonyl-2-methylcyclobutane, [a]D +58 (CHCl3), is (1R,2S)-
(+)-1.

The earlier assignment of (1S,2R) absolute stereochemistry
for (+)-11 must be reversed, and some assignments of absolute
stereochemistry for related structures need to be reconsidered.
The concerns are of more than academic interest, for structural
correlations leading to configurational assignments based on
links to (1R,2S)-(+)-1 extend to numerous natural products as
well as patented analogs of leukotriene, oxetanocin A, prosta-
glandins, and spermine.4

The original stereochemical assignment depended on a
structural correlation from the bicyclic lactone (1S,5R)-(+)-3 to
(+)-1 (Scheme 2). A sample of (+)-3, [a]D +116.7 (CHCl3), was
combined with HBr in CH3OH to give cis-1-methoxycarbonyl-
2-(bromomethyl)cyclobutane; reduction of the CH2Br group to
CH3 with Bu3SnH gave (+)-1, [a]D +22.4 (CHCl3), in 97%
yield.1 Since the stereochemical correlation of Scheme 2 leads

to the wrong assignment of absolute sterechemistry for (+)-1,
either the stereochemical assignment for (+)-3 must be reversed,
or the synthetic chemistry involved must, somehow, be
misformulated.

The reference compound (+)-3 had been assigned (1S,5R)
stereochemistry based on a correlation with a chiral sample of
trans-1,2-di(hydroxymethyl)cyclobutane (Scheme 3).5 Lactone
(+)-3 ([a]D +118.7 (CHCl3), 100% ee) was hydrolyzed and
epimerized to afford a trans-2-(hydroxymethyl)cyclobutane-
carboxylic acid as a viscous oil, [a]D 232.4 (CHCl3), in 52%
yield.5 Reduction gave “(1R,2R)”-(2)-5, [a]D 24.8 (EtOH), in
97% yield. The literature cited for the “(1R,2R)” trans-diol
reported [a]D 24.3 (EtOH),6 a seemingly fair match. The
reference diol (2)-5 was thought to be essentially 100% ee,
based on criteria related to circular polarization of lumines-
cence;7 it was derived from (2)-trans-cyclobutane-1,2-di-
carboxylic acid,7 a compound of securely known (1R,2R)
absolute stereochemistry.8

In the published account of the conversion of (2)-trans-
cyclobutane-1,2-dicarboxylic acid to the “(1R,2R)” trans-diol,7
no sign of rotation for the diol was cited9,10 Reduction of
(1S,2S)-(+)-trans-cyclobutane-1,2-dicarboxylic acid ([a]D
+156.4 (H2O)) with LiAlH4 gives (1S,2S)-(2)-5, [a]D 267.1
(benzene).11 In an independent study, the (1R,2R)-(2)-diacid
was reduced to (1R,2R)-(+)-5, [a]D +64 (benzene).12

The chemical correlation steps in Scheme 3 apparently
involve a great loss of optical purity. For trans-diol “(1R,2R)”-
(2)-5 [a]D24.8 (EtOH) was reported,5 far from the value more
recently determined for the (1S,2S) isomer, [a]D 267.1
(benzene).11 The base-catalyzed reaction in Scheme 3, con-
ducted with conc. aq. NaOH in a stainless steel tube at 130 °C
over 8 days,5 may well have involved more than a simple
epimerization at C1 adjacent to the carboxylic acid (carboxylate
anion) function.13

Given the poor preservation of stereochemical integrity and
the faulty reference sample employed, the synthetic steps in
Scheme 3 cannot provide a sure designation of configuration for
lactone (+)-3. Nevertheless we believe that lactone (+)-3 is
indeed the (1S,5R) isomer, even though the original grounds for
the assignment now appear to be indecisive, since it has been
converted through a rational synthetic sequence to a sample of
enantiomerically pure (+)-grandisol.14

Scheme 1

Fig. 1 X-ray crystallographic structure based drawing of N-[(R)-a-
(hydroxymethyl)benzyl]-(1R,2S)-cis-2-methylcyclobutanecarboxamide
(2).

Scheme 2 Reported1 structural correlation.

Scheme 3 Reported5 correlation of (+)-3 with trans-diol (2)-5.
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A related stereochemical puzzle is posed by various reports
of pig liver esterase (ple) catalyzed hydrolyses of cis-
1,2-di(methoxycarbonyl)cyclobutane (Scheme 4): the reported
[a]D values of the ester-acid products are 23.6 (CHCl3),1523.0
(CHCl3),16 +1.6 (CHCl3),17 +2.7 (EtOH)18 and +4.4
(EtOH).19

Correlations establishing the absolute stereochemistry of
ester-acid 6 are outlined in Scheme 4. A levorotatory sample of
6 ([a]D 23.0 (CHCl3)) was converted as shown to (+)-3, [a]D
+106.7 (CHCl3), estimated to be of 97% ee.16 Thus the
assignment is (1R,2S)-6. A dextrorotatory sample of 6 ([a]D
+4.4 (EtOH)) was correlated with (1S,2S)-(+)-1,2-di(methox-
ycarbonyl)cyclobutane,8 (1S,2S)-(+)-7 (86% ee by chiral GC;
[a]D +120 (acetone), +119 (CHCl3)), confirming the assign-
ment (1R,2S)-6.19

We believe that all enantioselective ple-catalysed hydrolyses
of cis-1,2-di(methoxycarbonyl)cyclobutane favor formation of
(1R,2S)-(2)-6, and that its specific rotation is small. During
hydrolyses and isolation procedures a base-catalysed epimer-
ization might occur to a small extent, converting cis product
(1R,2S)-(2)-6 to trans ester-acid (1S,2S)-(+)-6 having a much
larger specific rotation.8 A minor amount of (1S,2S)-(+)-6 in a
product mixture might well escape detection and yet have a
major impact on the observed specific rotation.

Accordingly, samples of 6 having [a]D 23.0 (CHCl3)16 and
[a]D +4.4 (EtOH)19 are not enantiomeric:19 both samples are
more likely to be largely (1R,2S)-(2)-6, containing different,
small, easily overlooked amounts of (1S,2S)-(+)-6. Similarly,
samples of 6 with reported [a]D values of +1.6 (CHCl3)17 and
21.8 (CHCl3)20 are not enantiomeric, and the stereochemical
assignment “(1S,2R)”-(2)-6 suggested by Lukas20 must be
reversed. The “(1S,2R)”-(2)-6 sample was obtained from
(1R,2S)-(+)-1-(methoxycarbonyl)cyclobut-3-ene-2-carboxylic
acid21 through a catalytic hydrogenation and correlated with an
enantiomer of 3 that could only be formed from (1R,2S)-6.20

The present work establishes that (+)-1 is the (1R,2S) isomer.
We believe that (+)-3 is (1S,5R), and that all ple hydrolyses of
cis-1,2-di(methoxycarbonyl)cyclobutane give predominantly
(1R,2S)-(2)-6, in spite of reports of variable and sometimes
positive [a]D values, for under the reaction conditions small
amounts of (1S,2S)-(+)-6 may be formed.
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